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1 A polynomial is defined by f�x� = x3 + ax2 − 3ax − 12, where a is a constant.

(a) Given that �x + 2� is a factor of f�x�, find a. [3]

(b) Find the remainder when f�x� is divided by �x − 3�. [2]

2 Solve the equation 2 cos x = tan x�1 + 4 sin x� for 0Å ≤ x ≤ 360Å. [6]

3

log10 x

log10 y

O

�1, 2�

�3, 8�

The diagram shows the graph of log
10
y against log

10
x. This graph is a straight line which passes

through the points �1, 2� and �3, 8�.

(a) Find an equation for this straight line. [3]

(b) Hence determine the relationship between x and y, giving your answer in a form not involving

logarithms. [3]

4 Solve the inequality x4 − 5x2 − 36 > 0. [6]

5 The area of a circle is increasing at the rate of 3 cm2 s−1. Find the rate of change of the radius when

the circumference is 15 cm. [4]

6 The points A and B have coordinates �−2, 1� and �6, 7� respectively.

(a) Find the equation of the circle that has AB as a diameter. [3]

(b) Show that this circle does not meet the line 2x + y + 4 = 0. [5]

(c) Find the equation of the tangent to the circle at the point �5, 8�. Give your answer in the form

ax + by + c = 0, where a, b and c are integers. [4]
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7 The line l
1
has equation r =

`
a−3
7

a
+ ,

`
3

4

0

a
, where a is a constant.

(a) Given that this line passes through the point �2, 9, 7�, find the value of a. [2]

(b) Given also that the line l
1
is perpendicular to the line l

2
, where l

2
is given by r =

`
2

9

7

a
+ -

`
2

b−b
a
,

find the value of the constant b. [2]

(c) There are two points on the line l
1
that are a distance of 10 units from the point of intersection of

the two lines. Find the position vectors of these two points. [4]

8 The equation x3 − x − 2 = 0 has a single root !, which can be found using an iterative process.

(a) Use a sign change method to find the pair of consecutive integers between which ! lies. [2]

(b) In order to find the value of !, the iterative formula

x
n+1 =

_
p + q

x
n

,

with a suitable starting value, is to be used. Determine the values of the constants p and q and

hence find ! correct to 4 significant figures. Show the result of each iteration. [4]

(c) By considering the gradient of an appropriate function, explain why an iterative process using

the formula x
n+1 = x

n
+ 2

x2
n

will not converge to !. [4]

9 A curve has equation x2 − 3xy + y3 = 8.

(a) Find the gradient of the curve at the point where it crosses the y-axis. [5]

(b) Find the value of
d2y

dx2
at the point where the curve crosses the y-axis. [5]

Question 10 is printed on the next page.
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10

x

y

O

(a) The diagram shows part of the curve y = 1
�
k2 + x2

�2 , where k is a constant greater than 0. The

curve has a stationary point at x = 0, and this is a local maximum. Show that there are no other

stationary points. [3]

(b) Use the substitution x = k tanu to show that

Ô k

0

1
�
k2 + x2

�2 dx = 2 + π
8k3

. [8]

(c) Hence find the area enclosed by the curve y = 1
�
k2 + x2

�2 , the tangent to the curve at x = 0 and

the line x = k. [2]
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